On the ratio ergodic theorem for semi-groups
نویسندگان
چکیده
منابع مشابه
On the ratio ergodic theorem for group actions
We study the ratio ergodic theorem (RET) of Hopf for group actions. Under a certain technical condition, if a sequence of sets {Fn} in a group satisfy the RET, then there is a finite set E such that {EFn} satisfies the Besicovitch covering property. Consequently for the abelian group G = ⊕n=1Z there is no sequence Fn ⊆ G along which the RET holds, and in many finitely generated groups, includin...
متن کاملUpgrading the Local Ergodic Theorem for planar semi-dispersing billiards
The Local Ergodic Theorem (also known as the ‘Fundamental Theorem’) gives sufficient conditions under which a phase point has an open neighborhood that belongs (mod 0) to one ergodic component. This theorem is a key ingredient of many proofs of ergodicity for billiards and, more generally, for smooth hyperbolic maps with singularities. However, the proof of that theorem relies upon a delicate a...
متن کاملA Ratio Ergodic Theorem for Multiparameter Non-singular Actions
We prove a ratio ergodic theorem for non-singular free Z and R actions, along balls in an arbitrary norm. Using a Chacon-Ornstein type lemma the proof is reduced to a statement about the amount of mass of a probability measure that can concentrate on (thickened) boundaries of balls in R. The proof relies on geometric properties of norms, including the Besicovitch covering lemma and the fact tha...
متن کاملUpgrading Local Ergodic Theorem for planar semi-dispersing billiards
Local Ergodic Theorem (also known as ‘Fundamental Theorem’) gives sufficient conditions under which a phase point has an open neighborhood that belongs (mod 0) to one ergodic component. This theorem is a key ingredient of many proofs of ergodicity for billiards and, more generally, for smooth hyperbolic maps with singularities. However the proof of that theorem relies upon a delicate assumption...
متن کاملOn the Mean Ergodic Theorem for Subsequences
With these assumptions we have T defined for every integer n as a 1-1, onto, bimeasurable transformation. Henceforth we shall assume that every set considered is measurable, i.e. an element of a. We shall say that P is invariant if P(A) =P(TA) for every set A, P is ergodic if P is invariant and if P(U^L_oo TA) = 1 for every set A for which P(A) > 0 , and finally P is strongly mixing if P is inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1971
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1971.39.659